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1 Motivation

In topological data analysis (TDA), matching topological signals is an active area of reseach [6, 8, 10]. At its core,
matching the signals involves registering them to a topological template. Stratified Gradient Sampling (SGS) is
a recently introduced procedure for registering topological objects to a common template [8]. The SGS method
works by learning a filter function on the template such that it can faithfully recover all topological objects
registered to it. After computing a topological template, the task of matching topological objects reduces to
matching their topological features in the shared template space.
In the space of topological signal matching, an equally important concept is the "similarity" of signals within
a given topological object or to a more general setting, across groups of topological objects. In this work, our
interest is in the cycle structure of topological objects and the signals defined on them. By constructing cycle
communities, we study the similarities of cycles within and across groups of topological objects. To this end,
we extend the SGS procedure for learning a single filter function to learning a collection of filter functions
simultaneously. We show that the collection of filter functions are optimal cycle barycenter functions, each of
which can faithfully reconstruct a set of cycles. The set of cycles each filter function can reconstruct will be
termed the cycle communities, where these communities are non-overlapping.

2 Preliminary on Topology

We provide a brief introduction to some topological concepts necessary for formulating our cycle community
identification problem.

Graphs as Simplicial Complexes A k-simplex σk = (v0, · · · , vk) is a k-dimensional polytope of nodes
v0, · · · , vk. A simplicial complex K is a finite set of simplices such that for any σi

k, σ
j
k ∈ K, σi

k ∩ σj
k is a face

of both simplices; and a face of any σi
k ∈ K is also a simplex in K [5]. A 0-skeleton is a simplicial complex

consisting of only nodes, whiles a 1-skeleton consists of nodes and edges. A k-chain is a finite sum of simplices.
For two successive chain groups Kk and Kk−1, the boundary operator ∂k : Kk −→ Kk−1 for each σk is given by

∂k(σk) =

k∑
i=0

(−1)i(v0, · · · , v̂i, · · · , vk), (1)

where (v0, · · · , v̂i, · · · , vk) gives the k-1 faces of σk obtained by deleting node v̂i. Figure 1 provides an illustration
of this chain mapping.
For the purposes of computation, the matrix representation Bk = (Bij

k ) of ∂k is often defined as follows

Bij
k =


1, if σi

k−1 ⊂ σj
k and σi

k−1 ∼ σj
k

−1, if σi
k−1 ⊂ σj

k and σi
k−1 ≁ σj

k

0, if σi
k−1 ̸⊂ σj

k

, (2)

where ∼ and ≁ denote similar and dissimilar orientations respectively. Two important components of the
boundary map (1) are its kernel ker(∂k) and image img(∂k+1), which are subspaces of Kk. The elements of
ker(∂k) and img(∂k+1) are known as k-cycles and k-boundaries respectively [7]. Graphs are 1D simplicial
complexes. For graphs, img(∂2) = ∅ and the first homology module H1 = ker(∂1), whose elements are 1-cycles.
For the remainder of this work, we will simply refer to the 1-cycles as cycles.

2.1 Filter Functions and Persistent Homology

The common approach to studying the persistence of homology generators is to construct a filtration on the set
of 0-simplices (nodes). We adopt a slightly different approach in this work and define the filtration along the
1-simplices. By adopting this approach, we assume the homology generators are dependent on the connection
relation (correlation, distance, among others) between any two points in the topological space. To properly
develop the theory, we also restrict our exposition to one-dimensional simplicial complex. This stems from the
fact that 1-cycles/loops can be fully identified from the one-dimensional simplicial complex. We start with the
full simplex which we assume is a graph, and sequentially threshold.
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Fig. 1: (a) A 2-dimensional simplicial complex. (b) A chain complex mapping with boundary operators that
map higher dimensional simplices to lower dimensional simplices.

Filtration A filtration defined on a simplicial complex K is a map F : K −→ R|K1|. This map induces an
inclusion relation of the simplicial complex K such that Kϵr ⊆ Kϵk whenever F (ϵk) ≥ F (ϵr) where ϵk and ϵr
are some indexes defined on the k-th and r-th 1-simplices respectively. F will be termed a filter function. For
example, if the topological space under consideration is a graph, F (ϵk) could be the edge weight associated
with that edge (1-simplex). The Figure 2 illustrates an example filtration over a one-dimensional simplicial
complex with four nodes (0-simplices) and five edges (1-simplicies). For example, w24 < w34 < w13 < w23 < w12

are ordered thresholds (edge weights). As we sequentially move along these thresholds, more 1-simplices are
disconnected, increasing the number of connected components (β0), and decreasing the number of 1-cycles (β1).
This increase in β0 and decrease in β1 is monotonic. To see the inclusion relation with the filter function F ,
observe that F (ϵ5) = w24, and F (ϵ4) = w34 which implies that F (ϵ5) > F (ϵ4). Further observe that Kϵ4 ⊂ Kϵ5

since Kϵ4 includes all the 1-simplices in Kϵ5 except that joining point 3 and 4. The filtration allows us to track
the birth of connected components (0-cycles) and the death of 1-cycles over the span of the filtration values. The
persistence of a connected component or 1-cycle that appears at filtration value bi and disappears at filtration
value di is represented by the interval [bi, di]. The length of this interval characterizes the persistence (life-span)
of the 0-cycles or 1-cycles. This characterization is formalized through the concept of persistent homology and
is discussed in the next section.

Fig. 2: An illustration of the filtration on a 1-dimensional simplicial complex. A dashed red or blue line indicates
an edge that has been deleted. From top-left, the full simplicial complex which is sequentially thresholded to
the point set(top-right). Bottom-left, the non-increasing count of the number of 1-cycles/loops. Bottom-right,
the non-decreasing count of the number of connected components.
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Persistent Homology The Persistent Homology (PH) is a framework for tracking the topological changes of
K induced by the filter function F over the span of the filtration [4, 5]. More specifically, it tracks the filtration
value bi at which a cycle appears and the filtration value di at which the cycle disappears. A finite collection
of [bi, di] can be summarized in the form of a barcode (Figure 2 bottom). For our filtration framework adopted,
when a connected component is born, it never dies, hence it’s lifespan is [bi,∞). Similarly, all the 1-cycles are
born when the graph is first formed and it’s lifespan is represented as (−∞, di]. For practical considerations,
it is sufficient to replace the infinite values with the minimum and maximum filtration values, and it is the
approach that will be adopted in this work. During the filtration, when an edge is deleted, a 0-cycle is formed
or a 1-cycle dies. Both events can not occur at the same time [11]. The persistence of a cycle that appears at
filtration value bi and disappears at filtration value di is given by the interval [bi, di]. A finite collection of [bi, di]
can be summarized in the form of a barcode. Ignoring ±∞, the collection of birth values B(X ) and death values
D(X ) can be represented as the 0D and 1D barcode:

B(K) = b1 < b2 < · · · < bp, D(K) = d1 < d2 < · · · < dq. (3)

The point (bi, di) ∈ R2 is referred to as the persistence interval, and its length measures the persistence of a
given cycle. Longer persistence indicates topological signal whiles shorter persistence might represent topological
noise.

3 Method

The approach to our cycle community construction is to develop a topological optimization process through
cycle registration. The cycle registration involves building optimization over PH within cycle generating strata.
For this, we adopt the stratified gradient sampling approach introduced in [8]. We define a persistence map
and prove that it is Lipschitz continuous. We state some differentiability results and present the convergence
analysis. Finally, we present an algorithm for the cycle community construction.

3.1 Stratified Gradient Sampling

The concept of stratified sampling is ubiquitous in machine learning. It mostly used to create a test set in a
small-sample machine learning problem. Gradeint sampling is a methodology to extend the steepest descent
method of minimizing smooth functions to nonsmooth and potentially nonconvex functions. The main idea
is to compute an approximate differential of nonsmooth functions by sampling gradients. When this gradient
sampling is restricted to strata of a given space, it is term the stratified gradient sampling. We introduce some
of the key concepts used in developing this stratified gradient sampling methodology.

Smooth Stratifiable Functions In topology, stratification involves the partitioning of a topological space.
Recall that our main topological objects, graphs (one-dimensional simplicial complexes) are topological spaces.
The goal here is to achieve some sense of smoothness for functions defined on the various strata. More formally,
consider the stratification of the topological space K = {Kn}n∈N . Let f be a function from K to the real line,
and fn a restriction of f to the stratum Kn. Then f : K −→ R is deemed a smooth stratifiable function if fn
is twice continuously differentiable in a neighborhood of Kn. Other formal definitions of stratifiable functions
exists, in particular, a popular one is the Whitney stratification which requires {Kn}n∈N to be Whitney [1]. The
smoothness of f restricted to each stratum guarantees that we have a unique limit of the gradient ∇fn(σl ∈ Kn)
given by ∇Knf(σ) as long as σl (a sequence of subsets of K) converges to σ ∈ Kn. Given these limit guarantees,
we present a gradient descent algorithm for smooth stratifiable functions.

Gradient Descent on Smooth Stratifiable Functions The direction of steepest descent for a function f
with non-zero differential at a point say σ is often denoted as −∇f(σ). This can be obtained via the minimization

argmin
||u||2≤1

∇f(σ)⊤u = − ∇f(σ)

||∇f(σ)||2
. (4)

Notice the slight abuse of notation here, as f is not necessarily the smooth stratifiable function defined in the
previous section. We will make this distinction in further expositions below. The assumption on f is that it is
smooth and convex. When the differentiability condition ∇f(σ) ̸= 0 is not satisfied, −∇f(σ) is no longer the
direction of steepest descent, and only small decreases are recorded along this direction. To provide a workaround
to this, the gradient sampling solve (approximately) a min max optimization problem and obtaining the direction
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of descent. More formally, for a δ-subdifferential of f (where f i snow taken to be a smooth stratifiable function)
at σ given by ∂̄δf(σ), the descent direction is obtained by solving the min max problem

min
||u||2≤1

max
g∈∂̄δf(σ)

g⊤u. (5)

Observe that ∂̄δ is a convex set, hence the descent direction will be a projection of the origin on this set. In
particular, we have that ⟨g(σ, δ), g(σ, δ)− g⟩ ≤ 0 where the descent direction is obtained from (5) and have the
explicit form

g(σ, δ) = argmin{||g||22, g ∈ ∂̄δf(σ)}. (6)

The following proposition summarizes the descent property of the direction g(σ, δ) of the smooth stratifiable
function f .

Proposition 1 Let B(σ, δ0) be a ball such that the gradients of the function restrictions fn to it have a Lipschitz
constant L. The function restriction fn is with respect to the base function f which is assumed to be stratifiably
smooth. Then for any 0 < α < 2L, and a non-stationary point δ, the following two conditions holds:

(i) If we choose δ small enough, we have the upper bound δ ≤ 1
α ||g(σ, δ)||2.

(ii) Given the upper bound in (i), it follows that f(σ − γg(σ, δ)) ≤ f(σ)− γ||g(σ, δ)||22 for all γ ≤ δ
||g(σ,δ)||2 .

This proposition is a derivative of the Lebourg Mean value Theorem, and the proof also follows directly from this
theorem [3]. For a given δ-neighborhood the convex set ∂̄δf(σ) will consists of infinitely many gradients, hence
we will work with the assumption that, the gradient information in ∂̄δf(x) are δ-close to σ. We now present a
computational heuristic for the stratified gradient sampling in Algorithm 2. In the algorithm, we will make the
assumption that the iterates are points of differentiability with respect to f otherwise a small perturbation can
be added to make it a point of differentiability. The α in Proposition1 controls the rate of descent. A couple

Algorithm 1 A Stratified Gradient Sampling Algorithm for f

Require: Stratifiably smooth function f , initial iterate σ0, initial sampling radius δ, a constraint on the exploration
radius C0, descent rate α, step size decay η, termination tolerance (δopt, νopt) ∈ [0,∞)× [0,∞).

Ensure: 0 < α ≤ 2L, δ > 0, 0 < η < 1.
1: for k ∈ N do
2: Ck+1 ← Ck

3: δk+1 ← δ
4: γk+1 ← γk
5: while f(σk − γkg(σk, δk)) > f(σk)− γ||g(σk, δk)||22 and δk > Ck+1||g(σk, δk)||2 do
6: Independently sample {σ1

k, · · · , σm
l } from B(σk, δk) = {σ : ||σ − σk||2 ≤ δk}

7: Gk ← conv{∇f(σk),∇f(σ1
k), · · · ,∇f(σm

k )} ▷ This will eventually converge to the δk-subgradients ∂̄δkf(σk).
8: g(σk, δk)← argmin{||g||22, g ∈ Gk}
9: if ||g(σk, δk)|| ≤ νopt and δk ≤ δopt then terminate

10: end if
11: γk ← δk

||g(σk,δk)||2
12: δk ← ηδk ▷ Reduction in sampling radius
13: end while
14: σk+1 ← σk − γkg(δk, sogmak) ▷ It might be necessary to perturb σk+1 such that ∇f(σk+1) ̸= 0
15: if ||g(σk, δk)|| ≤ νopt and δk ≤ δopt then terminate
16: end if
17: end for

of remarks about Algorithm 2. The conv(.) is just the convex hull of the gradients from the remote strata.
This algorithm is also quite similar to the gradient sampling algorithm presented in [2]. A more elaborate set of
algorithms that accomplishes a similar sampling scheme can be found in Algorithm 2 - Algorithm 6 of the recent
paper [8]. The development in this section lays both the theoretical and practical foundations for optimizing
persistence maps which falls in the class of nonsmooth and nonconvex functions but can be made stratifiably
smooth. The optimization over these persistence maps is required for our cycle community construction and
will presented in the next section.

3.2 Topological Centroid Registration

We introduce the concept of topological centroid registration. The main idea is to find a cycle centroids of
one-dimensional simplicial complexes (graphs). Since each cycle is a sub-complex, the process is akin to finding
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the the topological barycenter of a collection of subcomplexes.

The exposition in this section will be restricted to the one-dimensional simplicial complex K and its first
homology group/module H1. Since H1 is fully characterized by D(K), the 1D-barcode, any reference to a
barcode will be assumed to be D(K). We define a persistence map PH(.) that takes values from K to D(K)
through the filter function F . This involves transforming D(K) into a metric space by equipping it with the
Wasserstein distance. Let ϕ be a bijective map between two barcodes D1 and D2 with the form ϕ : D1 −→ D2.
The p-th Wasserstein distance between two diagrams has the form

Wp(D1, D2) = inf
ϕ

 ∑
(b,d)∈D

||ϕ(b, d)− (b, d)||p2

1/p

. (7)

We observe that under the filtration approach adopted in this work, this distance admits a simplified form for
p = 2 summarized in the proposition below.

Proposition 2 Let D1 and D2 be two sets of barcodes defined according to (3). The 2-Wasserstein distance
between D1 and D2 admits the simplified form

W2(D1, D2) = inf
ϕ

 ∑
(b,d)∈D

||ϕ(b, d)− (b, d)||22

1/2

=

 q∑
j=1

|d1(j) − d2(j)|
2

1/2

, (8)

where d1(j) and d2(j) are the j-th ordered values of the death times in D1 and D2 respectively.

The proof is a direct consequence of order statistics, since by the assumption of our filtration, all the cycles are
formed when the simplex is first created hence have the same birth values. This allows us to simply sort and
match the death values. Following from this, we have the map PH : K −→ D(K) is Lipschitz continuous, and is
a result of the stability results associated with persistence diagrams [5]. In what follows, any discussion of the
p-Wasserstein distance will be the context of p = 2. It remains to show that the filter functions are stratifiably
smooth.

Consider a map from the set of barcodes D(K) to the real line: U : D(K) −→ R. The differentiability of U
is guaranteed by some results on the differentiability of persistence functions established in [9]. From this it
follows that a filter function F can be written as the composition of PH and U , i.e., F = UoPH, and it is in
fact a stratifiably smooth function from our previous discussions. This now allows us to optimize over this set of
filter functions using the stratified gradient sampling method introduced detailed in Algorithm 2. The centroid
registration can be summarized as follows.

Let CK ∈ H1, k = 1, · · · ,Q be the set of cycles, where Q is the cardinality of the basis cycles in H1. Define
F = {F1, · · · , FQ} to be the set of filter functions, each corresponding to Ck. Let C′

r, r = 1, · · · ,P be a set of
template cycles such that P ≪ Q. We can learn a set of filter functions F′ = {F ′

1, · · · , F ′
P} such that

P∑
r=1

Q∑
k=1

Wp

(
PH(F ′

r, C′
r), PH(Fk, C(r)

k )
)

(9)

is minimized. Wp(., .) is the p-th Wasserstein metric between the persistence intervals [12], and C(r))
k is used to

denote that it can faithfully be reconstructed from the filter function F ′
r. Since the optimization is over a filter

functions which are established to stratifiably smooth, by Proposition 1, we are guaranteed this will converge
to a stationary point. The set F′ = {F ′

1, · · · , F ′
P} can be regarded as the cycle barycenters. These barycenters

(centroids) can be used to construct cycle communities in a similar fashion as k-means clustering.

3.3 Cycle Communities Construction

We now present an algorithm for obtaining the cycle communities based on the optimization problem stated
in (9). The algorithm construction follows similar dynamics as in k-means clustering. A full-blown convergence
analysis is required to establish any convergence results but a cursory glance indicates that it will always converge
to local stationary point. Further observe that this algorithm assumes a single homology group. However, it
can easily be extended to multiple homology across for comparison across objects by simply combining the
homology groups. We now demonstrate the application of this concept cycle communities construction through
a simulation study.
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Algorithm 2 Cycles Communities Construction
Require: Cycle basis or homology basis generators CK ∈ H1, k = 1, · · · ,Q. Choose initial centroids C′r, r = 1, · · · ,P,

numerical stopping criteria w.
Ensure: P ≤ Q, and w > 0

1: while
∑P

r=1

∑Q
k=1 Wp

(
PH(F ′

r, C′r), PH(Fk, C(r)k )
)
> w do

2: Register the Q cycles to centroid simplex C(r)k ←Wp

(
PH(F ′

r, C′r), PH(Fk, C(r)k )
)

3: Assign the cycles to centroid groups where
∑P

r=1 Wp

(
PH(F ′

r, C′r), PH(Fk, C(r)k )
)

is minimal
4: end while

4 Experiments

We demonstrate our cycle community construction concept through a simulation study by comparing . The
three topological spaces used in this simulation are modelled after the skeletons of Tropaeolum, Chardonnay
and Cabernet (Figure 3-top). Eighteen points were specifically chosen at cordinates (Figure 3-bottom) along

Fig. 3: The topological spaces used in the simulation. Group 1 (Tropaeolum) is topologically different from
Group 2 and Group 3. Group 2 (Chardonnay) is topologically equivalent to Group 3 (Cabernet).

these skeletons and perturbed with noise N(0, 0.025), and seven networks were generated in each group. Group
1 is expected to have much different first homology group H1 (cycles) compared to Group 2 and Group 3.
Group 2 and Group 3 will however have similar cycles since their first homology generators will be quite close
by the construction of the simulation. In running the experiment, we expect two distinct communities with the
potential for a non-influential third community. The first major community should primarily be made up of the
cycles in Group 1 and the second major community should primarily be made up of the cycles in Group 2 and
Group 3.
Partial results confirm the clustering pattern expected in our experimental design.
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5 Conclusion

This project demonstrates the power of combining gradient descent, subsampling methods to the novel concept
of cycle communities construction. Preliminary experimental results demonstrates the efficacy of the proposed
methodology. A much elaborate theoretical development and experimental runs will more reinforce these real-
izations and it will be an exciting area of exploration in the future.
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