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Abstract. In topological data analysis, matching topological signals
across subjects is of paramount importance. We develop a novel pro-
cedure for registering and matching cycles in brain networks using tools
from algebraic topology. This procedure will allow for the joint identi-
fication of cycles in brain networks. A modification of the Wasserstein
distance that is computationally scalable is proposed to discriminate be-
tween persistence diagrams emanating from registered cycles. We showed
that the registration scheme provides for a more topologically discrimi-
native set of features. The method is applied in comparing cycles present
in male and female functional brain networks.
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1 Introduction

The structure and function of the human brain network are characterized by
synchrony in neurophysical activities [15]. The neuronal interactions underlying
this synchrony transcend dyadic or pairwise interactions and are primarily driven
by polyadic or higher-order interactions [15]. The cycles in the human brain
network embeds these higher-order interactions [3, 15]. Further, the cycles in the
brain are associated with the propagation of information and the accompanying
feedback loop, as well as the redundancy and information bottleneck problems
[11]. This posits the cycles as communication channels along which signals on
shared or co-activated neural functions are propagated. A natural question is
then how one identify the meaningful features underlying these signals while
reducing the effect of noise? To explore this question, we propose to use tools
and concepts from topological data analysis (TDA) [1, 6, 7, 13].

One of the main tools of TDA is persistent homology (PH), which allows for
the computation of topological features of space at different spatial resolutions
[7]. Previously, PH has been applied to establish algebraic and statistical prop-
erties of topological features [3]. The central theme in these studies is to develop
inference procedures on topological features that persists over wide spatial scales,
which are likely to present as signals. To study the cycles in brain networks from
the construct of PH, one first casts the brain networks as simplicial complexes,
which are the basic building blocks in TDA for representing complex data. Brain
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networks are normally expressed as graphs. In TDA, graphs are 1D simplicial
complexes [9]. The cycles in brain networks are topological invariants, and their
homology can be probed through their simplicial complex representation.

To identify meaningful features underlying the cycles, one approach is to
compare the homology generating the cycles using topological distances. Two
common topological distances with established stability properties for comparing
the homology of topological objects are the Bottleneck and the Wasserstein
distances [4, 16]. The main inputs to these distances are the persistence diagrams,
which are the 2D embedding of the persistent homology as scatter points. In
the context of 1D simplicial complexes, this simplifies to comparing the sorted
1D scatter points constituting the persistent diagrams. However, this simple
procedure conflates the effect of comparing topological features with similar or
dissimilar topological features [13].

In this study we develop a novel procedure for registering and matching cycles
in brain networks using tools from algebraic topology. The main idea is to iso-
late matching and non-matching cycles by comparing their homology generators,
which we termed as the cycle registration. This allows for the joint identification
of cycles across topological spaces. We use a modification of the Wasserstein
distance that is computationally more scalable in discriminating persistence di-
agrams. We show that the matching process reduces spurious significant cycles
in a discriminating process. The method is applied in comparing cycles present
in male and female functional brain networks.

2 Preliminaries

Graphs as Simplicial Complexes A k-simplex σk = (v0, · · · , vk) is a k-
dimensional polytope of nodes v0, · · · , vk. A simplicial complex K is a finite set
of simplices such that for any σi

k, σ
j
k ∈ K, σi

k ∩ σj
k is a face of both simplices;

and a face of any σi
k ∈ K is also a simplex in K [7]. A 0-skeleton is a simplicial

complex consisting of only nodes, whiles a 1-skeleton consists of nodes and edges.
A k-chain is a finite sum of simplices. For two successive chain groups Kk and
Kk−1, the boundary operator ∂k : Kk −→ Kk−1 for each σk is given by

∂k(σk) =

k∑
i=0

(−1)i(v0, · · · , v̂i, · · · , vk), (1)

where (v0, · · · , v̂i, · · · , vk) gives the k-1 faces of σk obtained by deleting node v̂i.
The matrix representation Bk = (Bij

k ) of the boundary operator has the form

Bij
k =


1, if σi

k−1 ⊂ σj
k and σi

k−1 ∼ σj
k

−1, if σi
k−1 ⊂ σj

k and σi
k−1 ≁ σj

k

0, if σi
k−1 ̸⊂ σj

k

, (2)

where ∼ and ≁ denote similar and dissimilar orientations respectively. Two im-
portant components of the boundary map (1) are its kernel ker(∂k) and image
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img(∂k+1), which are subspaces of Kk. The elements of ker(∂k) and img(∂k+1)
are known as k-cycles and k-boundaries respectively [9]. Graphs are 1D simpli-
cial complex, and hence are topological spaces [9]. For graphs, img(∂2) = ∅ and
the first homology module H1(X ) = ker(∂1), whose elements are 1-cycles. The
rank of H1(X ) gives the first Betti number β1 [3, 14].

Graph Filtration & Birth-death Decomposition We consider a graph X =
(V,E,w) with node set V , edge set E, and edge weight matrix w = (wij). The
binary graph Xϵ = (V,E,wϵ) is a graph with binary edge weights wϵ = (wϵ,ij),
where wϵ,ij = 0 if wij > ϵ and is 0 otherwise. A graph filtration for ordered
thresholds ϵ0 < ... < ϵk is a collection of sequence of nested binary networks [3]

Xϵ0 ⊃ ... ⊃ Xϵk . (3)

As ϵk increases, more edges are disconnected, increasing the number of connected
components (0-cycles) (β0), and decreasing the number of 1-cycles (β1). β0 and
β1 are monotone over filtration values [3]. The filtration tracks the persistence of
the cycles [20]. The persistence of a cycle that appears at filtration value bi and
disappears at filtration value di is given by the interval [bi, di]. A finite collection
of [bi, di] can be summarized in the form of a barcode. During the filtration, 0-
cycles are born at bi and never dies (∞) whiles 1-cycles are born when the graph
is formed (−∞) and die at di. Ignoring ±∞, the collection of birth values B(X )

Fig. 1: Graph filtration on a four-node network. β0 is monotonically increasing
whiles β1 is monotonically decreasing.

and death values D(X ) can be represented as the 0D and 1D barcode:

B(X ) = b1 < b2 < · · · < bp, D(X ) = d1 < d2 < · · · < dq.
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The sets B(X ) and D(X ) partition edge weight {wij} such that B(X )∪D(X ) =
{wij} and B(X ) ∩D(X ) = ∅. Figure 1 illustrates this decomposition.

Hodge Laplacian The Hodge Laplacian Lk is a higher-dimensional general-
ization of the graph Laplacian for k-simplices [11]. It has the algebraic form:

Lk = Bk+1B⊤
k+1 + B⊤

k Bk. (4)

The k-th homology group Hk is the kernel of Lk, i.e., Hk = kerLk which is
spanned by the eigenvectors corresponding to the zero eigenvalues of Lk [11].
The eigendecomposition of Lk is given by LkUk = UkΛk, where Λk is a diagonal
matrix of eigenvalues with corresponding eigenvectors in the columns of Uk. For
graphs or 1-skeletons, the boundary matrix B2 = 0 and L1 = B⊤

1 B1 [11].

Homology Basis The homology of a topological space is characterized by its
k-dimensional cycles [7]. The basis of H1(X ) are the algebraically independent
1-cycles in X . To find basis, consider the birth-death decomposition of X [1, 6].
The birth set forms the maximum spanning tree (MST) (T ) and and the death
set the non-MST part (T ′). If the m-th edge σm

1 in T ′ is added to T , a subgraph
Xm with exactly one 1-cycle is formed. The Hodge Laplacian on Xm yields the
eigendecomposition identifying the 1-cycle. The m-th 1-cycle Cm is given by

Cm =

|T1|∑
j=1

cjm, where cjm =

{
uj
mσj

1, if σj
1 ∈ Xm

0, otherwise
. (5)

Here, um is the m-th eigenvector (a column of U1) corresponding to a zero
eigenvalue and uj

m is the j-th entry in this vector. We can show thatH1 = kerL1,
and {C1, · · · , C|K′|} spans kerL1 [1, 6].

3 Cycle Registration and Joint Identification

Registration in Homology Groups Consider continuous functions f and g
that maps between topological spaces X ,Y,Z:

f : X −→ Z, g : Y −→ Z. (6)

Let H1(X ), H1(Y), H1(Z) denote the homology groups associated with these
spaces. Let f ′, g′ be the induced homology maps. We assume further X ∪Y ⊂ Z.
For any inclusion relation (⊂) between 1-skeletons, the inclusion will be taken
with reference to their binary representation as defined in (3). Then we have
H1(X ) −→ H1(Z)←− H1(Y), where ←− or −→ denotes a mapping in the respective
direction [2, 13]. Two elements Cx ∈ H1(X ) and Cy ∈ H1(Y) are said to match
via space Z if

[f ′(Cx)] = [g′(Cy)] ̸= ∅.
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This matched cycle is a non-trivial cycle in Z with generators in both mappings
defined in (6). Repeating this process for all non-trivial cycles in H1(Z) will
generate a matching of all possible cycles between H1(X ) and H1(Y) [2, 13]. The
process described above matches cycles in the homology groups in an abstract
sense. In what follows, we extend the concept to match persistent cycles [5, 13].

Image-Persistent Homology To extend the registration to the persistence of
the homology generators, the image-persistent homology is adopted [5, 13]. We
reformulate it under the framework of graph filtration. Let

FX = {Xϵk : ϵk < ϵk+1,∀k},FY = {Yϵk : ϵk < ϵk+1,∀k},FZ = {Zϵk : ϵk < ϵk+1,∀k}

be graph filtration on the spaces X ,Y, and Z respectively. The inclusion map
fϵk and gϵk are defined on the filtered topological spaces:

fϵk : Xϵk −→ Zϵk , gϵk : Yϵk −→ Zϵk . (7)

The graph filtration embeds maps between subsequent filtrations of the form
Xϵk+1

ι−→ Xϵk ,Yϵk+1

ι−→ Yϵk ,Zϵk+1

ι−→ Zϵk . Coupling with (7), we obtain the com-
mutative diagram (Figure 2-left) and the induced commutative diagram between
the homology groups (Figure 2-right). The commutative diagram for Y can be
similarly drawn. The commutative property is essential to ensure that all fil-

Fig. 2: Left: the nested structure of the graph filtration led to the observed com-
mutative diagram. Right: The mapping between the topological spaces induces a
homology map which extends the commutative property to the homology groups.

tered spaces at the same filtration leads to the same result. To characterize the
induced persistence maps, we formalize the construction of the graph filtration
as follows.

(i) (Stable homology) During the filtration, for any ϵk /∈ E , we can always find
small enough γ > 0 such that the map f ′

ϵk
: H1(Xϵk+γ) −→ H1(Xϵk−γ). The

map f ′
ϵk

induces isomorphsim and there is no change in homology.
(ii) (Death of 1-cycles) For any ϵk ∈ E , there exists small enough γ > 0 such

that f ′
ϵk

: H1(Xϵk+γ) −→ H1(Xϵk−γ) and β1(Xϵk+γ) = β1(Xϵk−γ)− 1. The
homology change is the destruction of a single 1-cycle.

This construction allows us to define the images of the induced maps f ′
ϵk

as

Im(f ′
ϵk
) = {f ′

ϵk
(C) ∈ H1(Xϵk) : C ∈ H1(Xϵk+1

)}.
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Note that these images are persistent homology groups, hence the name image-
persistent homology [5]. The collection {Im(f ′

ϵk
)} is a filtration satisfying

Im(f ′
ϵ0) ⊃ Im(f ′

ϵ1) ⊃ · · · ⊃ Im(f ′
ϵk
),

where ϵ0 < · · · < ϵk are ordered thresholds. The elements of Im(f ′
ϵk
) are the

image-persistent cycles [5]. Computing the image-persistent homology under

Fig. 3: Top: the filtration FX of the space X . Bottom: the filtration FZ of the
space Z with X ⊂ Z. The mapping fϵk between the two spaces induces a map-
ping f ′

ϵk
between the homology groups. At each ϵk, the blue dashed-line indicates

the points that make up the barcodes. When combined with the solid red lines,
it gives the matching elements in H1(Xϵk) and H1(Zϵk). Right: the persistence
diagram tracking the life-span of the image-persistent cycles.

graph filtration follows the same process as in Figure 1. Using the image persis-
tence, we can now establish matching between persistence cycles.

Cycle Registration in Persistent Homology Using the image persistence,
we now define a matching of cycles in persistent homology. Let PH1(X ), and
PH1(Y) be the persistence homology associated with X and Y respectively.
Let PH1(f) and PH1(g) be the corresponding image-persistence homology. Ob-
serve that the persistence intervals are the basis elements of PH1. Further, these
persistence intervals characterized by their birth and death values generate the
persistence cycles in H1. The cycles with their persistence (birth to death inter-
val) given by Ix ∈ PH1(X ) and Iy ∈ PH1(Y) are said to match via the third
space Z if the following three conditions are satisfied:

Ĩf (b) = Ix(b), Ĩg(b) = Iy(b), Ĩf (d) = Ĩg(d). (8)

Here Ĩf (b) and Ĩf (d) respectively index the birth value b and death value d in
Ĩf . Under graph filtration, persistent-cycle matching can be attained by checking
only the last equality since the birth time is −∞.
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Metric for Comparing Cycles under Registration We modified the 2-
Wasserstein metric for comparing cycles under registration. Let PX and PY be
the persistence diagrams associated with the spaces X and Y. The 2-Wasserstein
distance D2 between PX and PY under graph filtration is given by [14]

[D2 (PX , PY)]
2
=

q∑
i=1

|dxi − dyi |
2, (9)

where dxi ∈ PX is the i-th smallest death value. When there is a mismatch in
the number of elements of PX and PY , data augmentation can be used [14].

However, 2-Wasserstein distance is not necessarily a good metric for topologi-
cal spaces under registration. Consider the following example. Figure 4 gives two
topological spaces X and Y and their topological union Z = X∪Y. The topologi-
cal union is defined as the average of the two spaces. We perform the birth-death

Fig. 4: Top: The two topological spaces X and Y and their topological union Z.
Bottom: The cycle spaces associated with the topological spaces X and Y. The 2-
Wasserstein distance between the two spaces is computed as D2(PX , PY) = 0.11.

decomposition and obtain the persistent diagrams PX = {0.30, 0.40, 0.45} and
PY = {0.25, 0.30, 0.45}. The 2-Wasserstein distance is computed asD2(PX , PY) =
0.11. This estimate understates the true difference between the two spaces as will
be shown in the next section. Observe that if two cycles match via the third space
Z, they do not contribute significantly to the difference between the two spaces.
Hence by considering only the scatter points in differentiating the cycle space
of X and Y, we conflate the effect of matching cycles and non-matching cycles.
In what follows, we incorporate the matching information in constructing the
discriminating metric.

Modified Wasserstein Distance Let dx ∼ dy denotes that dx and dy gen-
erates non-trivial matching cycles over the space Z, and dx ≁ dy denotes that
there does not exists matching non-trivial cycles generated by dx and dy over
the space Z. The modified 2-Wasserstein distance is defined as[

D̃2(PX , PY)
]2

=
∑

dx
i ∼dy

i

|dxi − dyi |
2 +

∑
dx
i ≁dy

i

|dxi − dyi |
2. (10)
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We note that the first half of this equation vanishes when Iz is in a discrete
space. Now consider the example given in Figure 4. If we register the cycles in
the two spaces X and Y over their topological union Z using our developed
registration scheme, then the modified Wasserstein distance between the spaces
evaluates to D̃2(PX , PY) = 0.15. The only difference between the two spaces is
given by the cycle generated by dx2 = 0.4 and dy1 = 0.25.

4 Validation

Since there is no topological ground truth in real data, we demonstrate the
matching scheme and the discriminatory power of the proposed Wasserstein
distance through a simulation. The three topological spaces used in this simula-
tion are modelled after the skeletons of Tropaeolum, Chardonnay and Cabernet
(Figure 5-top). Eighteen points were specifically chosen at cordinates (Figure 5-

Fig. 5: The topological spaces used in the simulation. Group 1 (Tropaeolum) is
topologically different from Group 2 and Group 3. Group 2 (Chardonnay) is
topologically equivalent to Group 3 (Cabernet).

bottom) along these skeletons and perturbed with noise N(0, 0.025), and seven
networks were generated in each group. For two groups of networks N1, N2, we
compute a ratio statistic as follows. Let LW denote the average of all within-
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group Wasserstein distances

LW = (
∑

X∈N1,Y∈N1

D̃2(PX , PY) +
∑

X∈N2,Y∈N2

D̃2(PX , PY))/(

(
m

2

)
+

(
n

2

)
). (11)

Let LB be the average of all between-group Wasserstein distances

LB = (
∑

X∈N1,Y∈N2

D̃2(PX , PY))/(m× n). (12)

The ratio statistic is then constructed as [14]

R(N1,N2) = LB/LW . (13)

We used
(
14
7

)
= 3432 permutations to approximate the distribution of the test

statistic (13) and compute the p-values. We validated our method against widely
used geometric distances: L1−,L2−,L∞-norms, Bottleneck (BN), Gromov-Hausdorff
(GH) as well as the standard Wasserstein distance (WS) distances [3]. The results
are given in Table 1, where the average p-values of 10 independent simulations
are reported. We also reported the false positive and false negative rates com-
puted as the fraction of 10 simulations with p-values below 0.05 or above 0.05
[14]. We tested if our method can detect topological equivalence by comparing

Table 1: The performance results summarized as average p-values, false positive
rates (first 4 rows) and false negative rates (last 2 rows). Group 2 and 3 have
matching cycles and are topologically identical. Group 1 differs topologically
from 2 and 3. Smaller false positive rates and false negative rates are preferred.
Groups L1 L2 L∞ GH BN WS R

1 vs. 1 0.43± 0.25 0.43± 0.23 0.50± 0.31 0.45± 0.32 0.51± 0.29 0.47± 0.23 0.59± 0.21
(0.00) (0.00) (0.00) (0.10) (0.00) (0.1) (0.00)

2 vs. 2 0.50± 0.35 0.47± 0.36 0.41± 0.33 0.44± 0.26 0.36± 0.28 0.58± 0.41 0.65± 0.27
(0.10) (0.10) (0.20) (0.10) (0.20) (0.00) (0.00)

3 vs. 3 0.52± 0.33 0.53± 0.34 0.51± 0.38 0.42± 0.31 0.38± 0.33 0.53± 0.32 0.53± 0.27
(0.10) (0.10) (0.20) (0.10) (0.20) (0.10) (0.10)

2 vs. 3 0.00± 0.00 0.00± 0.00 0.00± 0.00 0.67± 0.13 0.02± 0.03 0.25± 0.19 0.43± 0.32
(1.00) (1.00) (1.00) (0.00) (0.90) (0.10) (0.00)

1 vs. 2 0.00± 0.00 ±0.00 0.00± 0.00 0.17± 0.00 0.00± 0.00 0.00± 0.00 0.00± 0.00
(0.00) (0.00) (0.00) (1.00) (0.00) (0.00) (0.00)

1 vs. 3 0.00± 0.00 ±0.00 0.00± 0.00 0.63± 0.04 0.00± 0.00 0.00± 0.00 0.00± 0.00
(0.00) (0.00) (0.00) (1.00) (0.00) (0.00) (0.00)

between groups (the first 4 rows in Table 1). The test should not detect signals
and higher p-values and smaller false positive rates are preferred. The proposed
ratio statistic R outperformed the other distances. We also tested if the pro-
posed method can detect topological difference by comparing Groups 1 vs. 2,
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1 vs. 3 (the last 2 rows in Table 1). The test procedures should detect signals
and smaller p-values and smaller false negative rates are preferred. R performed
comparable to the other distances.

This simulation shows that the matching procedure coupled with the Wasser-
stein metric performs extremely well in not producing topological false positives.
When there is topological differences, there are always accompanying geometric
signals so existing geometric methods usually perform reasonably.

5 Application

Dataset We applied the method to the resting state functional magnetic reso-
nance imaging (rs-fMRI) data of 412 subjects obtained from the human connec-
tome project [18, 17]. rs-fMRI are collected at 2 mm isotropic voxels and 1200
time points [17]. Data that went through the standard minimal preprocessing
pipelines [8] was used. Volumes with framewise displacement larger than 0.5mm
and their neighbors were scrubbed [18, 17]. Twelve subjects having excessive
head movement were excluded. Subsequently, the Automated Anatomical La-
beling (AAL) template is used to parcellate and average rs-fMRI spatially into
116 non-overlapping anatomical regions [10]. The final data is comprised of the
fMRI of 400 subjects of which 232 are females and 168 are males.

Sexual Dimorphism in Cycles The networks are fully connected with p =
116 brain regions (nodes), hence we expect q = p(p − 1)/2 = 6555 linearly
independent 1-cycles [14] per network. We tested difference in the cycles space
between the male and female networks using the Wasserstein distance. 100000
permutations were used to approximate the distribution of the statistic (13)
and compute the p-value. The observed test statistic is 1.0609 and the p-value
obtained is 0.1103. We can further identify the specific cycles contributing to
this difference.

Most Discriminating Cycles We compute the matching score that quantifies
each connections contribution to the observed difference based on the following
steps. i) For any pair of networks, determine the cycle generators in each net-
work. ii) Perform the cycle registration between the two networks according to
(8). iii) For all such pairwise matching, compute the proportion of time a given
connection generated a matching cycle. The proportion is termed the matching
score. Connections with lower matching score will generate the most discrimi-
nating cycles across groups. Figure 6-middle shows the matching score between
networks in the male and female groups.

We identify the six most discriminating cycles by choosing the cycle genera-
tors (connections) with the least matching score. Figure 6 shows the six most dis-
criminating cycles corresponding to lowest values in the matching scores. These
cycles contributes the most to the difference between the male and female group
of networks. The Lobule X of vermis is present in five out of the six cycles. The
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Fig. 6: From top-left, the six most discriminating cycles corresponding to lowest
values in the matching scores. These cycles contributes the most to the signif-
icance difference between the male and female group of networks based on the
modified Wasserstein distance. Middle: the plot of the matching score.

vermis propagates neural signals to three core brain regions and studies have
shown a differential effect of sex on the vermis and its propagation of neural
signals in brain networks [12, 19].

6 Conclusion

We proposed a novel framework for registering and jointly identifying cycles in
brain networks. We showed that the registration scheme provides for a more
topologically discriminative set of features. The six most discriminating 1-cycles
identified through this registration contain brain regions: the Lobule X of ver-
mis (vermis-10), the right olfactory cortex (Olfactory-R), and the supramarginal
gyrus (SupraMarginal-L, SupraMarginal-R), and the amygdala (Amygdala-R,
Amygdala-L) (Figure 6). This work serves as a baseline for the registration and
joint identification of higher-dimensional topological features in brain networks,
and is left as a future study.
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